您好!欢迎访问菲尼特官方网站!
菲尼特

始创于2000年

专注光通信数据机房一站式解决方案
菲尼特就是光纤服务热线
400-800-5539
联系我们

    宁波凝网通信设备有限公司

  • 电 话:400-800-5539
  • 地 址:浙江省慈溪市观海卫镇
        洞桥村复兴路工业小区4号
当前位置:首页 » 行业新闻 » 常见问题

大数据对数据中心意味着什么

时间:2019-01-17 13:59 来源:菲尼特编辑部 作者:小菲 点击:

  我们已经可以从各种各样的渠道来源收集和存储数据,如网上交易、社交媒体活动、移动设备和自动化传感器等等,而软件的发展始终为新硬件的改进铺平了道路。

  大数据的计算和存储需求无疑正推动着存储硬件、网络基础设施和不断增长的新的计算需求处理方式的发展。对于大数据分析而言,最重要的基础设施莫过于存储设备了。

菲尼特数据中心

  关于延迟性

  大数据分析涉及到对社交媒体和交易数据的跟踪,这需要利用实时的战术决策。因此,大数据存储不能出现延迟状况或过时数据的状况。有些应用程序可能需要实时数据的以便进行实时的决策。存储系统必须能够在不牺牲性能的情况下向外扩展,这可以通过实施一个基于闪存的存储系统来实现。

  容量能力

  那些超过PB级规模的数据即可被认为是大数据。随着数据量的飞速增长,企业的存储设备也必须是高度可扩展的、且灵活的,以保证整个系统不会被打乱,进而重新增加存储。大数据转化为大量的元数据,所以传统的文件系统无法支持。为了减少可扩展性,面向对象的文件系统应该是灵活的。

  安全性

  由于交叉引用数据处于一个新的水平,会产生更大的形象图,新数据级别的安全注意事项可能需要考虑现有IT场景。存储设备应该能够在不牺牲可扩展性或延迟性能的前提下处理这些类型的数据级别的安全需求。

  灵活性

  大数据通常采用商业智能应用程序,这需要数据集成和迁移。然而,考虑到大数据的规模,存储系统需要修复而不能涉及任何数据的迁移需求,同时需要有足够的灵活性以适应不同类型的数据源,再次,也不能以牺牲性能或延迟性为代价。企业应谨慎考虑所有当前和未来可能的使用情况和场景,以进行存储系统的规划和设计。

  成本因素

  大数据项目也会涉及到大的成本。大数据分析所需的最昂贵的组件是存储设备。某些技术像重复数据删除可以使用磁带备份、数据冗余和构建定制的硬件,而不是使用市场上可以买到的任何可用的存储设备,这样可以帮助企业显著降低成本。

  保证正常访问

  由于大数据分析是用于跨多个平台和主机系统,需要有一个更大的交叉引用数据,并将所有这些结合在一起,以便提供一个形象图。因此,存储设备必须能够在同一时间处理来自不同源系统中的数据。

  以上就是大数据影响数据中心基础设施的6个方面。

本文标签: 数据中心